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Abstract: 

Modern machine learning methods often assume that the observed data are independent and identically 

distributed (i.i.d). While it is one of the most well-understood and well-researched principles in machine 

learning, the i.i.d assumption fails awfully in many real-world applications, specifically due to the identically 

distributed assumption. In some domains like medicine and behavioral science, one can relax the i.i.d 

assumption by using causal and anti-causal features. i.e., the existence of reliable causal structures (SCMs) can 

be utilized to ensure robustness to certain types of distribution shifts. . Our work explores this approach by 

predicting estimators using causal and anti-causal features across distinct domains -- showing that causal 

methods can improve the reliability of our predictions. We are investigating ways in which anti-causal features 

can be wisely used to improve prediction results while maintaining close to the same generalization of causal 

transfer learning. 

Keywords: Causal-inference; transfer-learning; empirical risk minimization; domain generalization 

1. Introduction  

Empirical Risk Minimization (ERM) traditionally assumes that training and test environments follow the 

same data distribution. During settings of distribution or dataset shift (Quiñonero-Candela et al., 2009),  the 

performance of the standard ERM methods deteriorates rapidly – making a 50-50 chance guess better than 

adopting a standard ERM learning framework. Consider a handwriting classification system (Zhang et al., 

2021), that is trained on a dataset of user data, but it has never seen the new end users. Each new end user 
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induces a never-seen data distribution – some of them having unique handwriting, causing extreme shifts in 

the global training distribution. Consequently, the model performance deteriorates rapidly.  

 Many previous algorithms are interested in discovering invariance; that is, estimating an invariant, 

causal predictors from multiple training environments, ignoring all spurious correlations within a data 

distribution (e.g., Arjovsky et al., 2020). Such algorithms can alleviate the excessive reliance of machine 

learning systems on data biases, enabling an out-of-distribution (OOD) generalization on new test 

distributions. However, these methods face limitations when the input-output relationship varies across 

data distributions. It also disregards all non-causal information, consequently affecting the invariance risk 

that it might not achieve good performance.  

 In Structural Causal Models SCMs, causal and anti-causal features are identified. In this report, we wisely 

investigate conditions when to use anti-causal information at test time to adapt to data shifts. To do so, we 

study problems in which the model does not know the causal and the anti-causal features. For example, in 

medical observational datasets, we have access to disease causes and symptoms, e.g., LUCAS and LUCAP 

lung cancer toy datasets from the causality challenge (Guyon et al., 2008). However, our model would not 

label Genetics as causal and Coughing as anti-causal. Instead, our model would estimate the weights 

assigned to each feature, making optimal use of causal and anti-causal features. We apply a set transformer 

to allow inputs to be permutation invariant and of any size. In addition, the Set Transformer allows our 

model to take advantage of group properties of data distributions and make our neural network more 

robust. (see Lee et al., 2018). We investigate different train conditions and analyze the behavior of our 

testing environments in relation to these conditions.  

2. Related Work  

Several prior works have studied distribution shifts, domain generalization, adaptation, and causal 

discovery. 
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Causal Invariance. As aforementioned, there are several learning frameworks that leverage invariant 

relations among training domains to address data distribution during test time (e.g., Arjovsky et al., 2020). 

While prior work typically assumes it is helpful and safe to ignore anti-causal features, in this report, we 

investigate ways in which anti-causal features can be helpful for out-of-domain generalization (OOD). We 

test this method along with our algorithm and identify settings where our algorithm outperforms ERM and 

other causal-information-only-reliant algorithms. 

Adaptation to distribution shifts. The Adaptive Risk Minimization (ARM) Algorithm (Zhang et al., 2021) is an 

unlabeled adaptation learning framework that is robust to data shifts. This model adapts by using unlabeled 

data batches to handle dataset or data distribution shifts. This work makes the connection between 

adaption to dataset shift and meta-learning explicit, enabling more amenable methods to expressive models 

(e.g., deep neural networks) – this leads to study real world problems with raw observational data.  

Distribution shifts have been studied before. For instance, domain adaptation algorithms that assume 

access to test examples at training time (Wilson & Cook, 2020). Most problems addressed in domain 

adaptation algorithms were of a single test distribution – having difficulty to being applied to multiple test 

distributions or domains. 

The Set Transformer. The Set Transformer is an attention-based neural network module (Lee et al., 2018), 

which aggregates inputs, ignoring the relative order of samples. For example, a set of causal and anti-causal 

features would depend on the input data not the relative order of causal Vs. anti-causal data. The Set 

Transformer is an effective tool in our process.   

3. Approach  

3.1 The model  

We are interested in predicting the target variable 𝑌 in unseen domains using causal and anti-causal 

features in source domains. Given a Structural Causal Model (SCM), our model – without knowing the causal 
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relations – uses all available information to figure out a learning pattern that outperforms standard ERM and 

behaves like causal ERM (which depends on the invariants in source domains).  

3.2 The Algorithm  

We devised an algorithm that follows an adaptation learning framework while taking advantage of the 

robustness of a Set Transformer to take advantage of group properties. We have our SCM generative 

process as 𝑌𝑘 = 𝛼𝑡𝑋𝑘 + 𝜖𝑘,  𝑍𝑘 = 𝛾𝑘𝑌𝑘 + 𝜂𝑘, where 𝜖𝑘 ∼ 𝒩(0, 𝜎2), 𝜂𝑘 ∼ 𝒩(0, 𝜎𝜂
2),  In this model, 𝜂𝑘 is 

the parameter responsible for the tasks. Our input data is �̂�𝑘, where  �̂�𝑘 = 𝑋𝑘 ∪ 𝑍𝑘. At training time, we 

have 𝑁 tasks available. We first calculate the ordinary least squares (OLS) estimators �̂�𝑆 for the input data �̂�.  

Then, we train the Set Transformer to predict optimal linear regression coefficients 𝛽𝑆
∗  (i.e., the best 

estimators for the weights of causal and anti-causal information). Then, we use the predicted estimators to 

calculate 𝑌, such that the expected loss function for 𝛽∗ verifies: 𝔼((𝑌 − 𝛽∗�̂�)
2
). Finally, we introduce a 

regularization term to account for the difference between �̂� and 𝛽∗ using a hyperparameter 𝜆 – the weight 

of the regularization term, making our final expected loss ℒ as: 

ℒ =  𝔼 ((𝑌 − (𝛽∗)𝑡�̂�)
2
) + 𝜆 ⋅ (

1

𝑁
⋅ Σ | �̂� − 𝛽∗|) , where 𝑁 is total number of features.  

 We show our algorithm for training and testing this algorithm as the following:  
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4. Experiments and Methods 

Our experiments were designed to answer the following:  

1. When does our model behave in a better, worse, or equal fashion compared to an i.i.d model or a 

causal model?  

2. Do certain properties of the source domains influence the efficacy of our approach?  

3. Is our model robust enough to handle different number of inputs, that is, multiple causal and anti-

causal features?  

To answer these questions, we proposed the following design:  

Algorithm: domain generalization using causal and anti-causal features 

// Training procedure  

Require: batch size N, # training steps T, L1 weight 𝜆  

1: Initialize:  ℒ, ST  ,  ℒ is the loss function, ST is the Set Transformer 

2: for 𝑡 = 1,⋯ , 𝑇 do   

3:  Sample corresponding (𝑥̅ 𝑘 , �̂�𝑘) ← 𝑆𝑇(�̂�𝑆, �̂�𝑆) for 𝑘 =  1,… ,𝑁 from training groups 

4:  𝛽∗ ← 𝑔(𝑥̅ 𝑘 , �̂�𝑘) predict optimal estimators from �̂� 

5:  calculate �̂�𝑘  from (𝑥̅ 𝑘 , �̂�𝑘)  for 𝑘 = 1,… ,𝑁 

6:   ℒ ← ℒ(𝑦𝑘 , �̂�𝑘) + λ ⋅ (
1

N
Σ𝑘=1
K |𝛽𝑘 − 𝛽 𝑘|)     where 𝑦𝑘 is true target variable, �̂�𝑘 is predicted 

7: back propagation  

// Testing procedure  

Require: test batch �̂�𝑇: 𝑥̅1, … , 𝑥̅𝐾,  𝜃  

7: 𝛽∗ ← 𝑆𝑇(𝜃, 𝑥̅1, … , 𝑥̅𝐾; �̂�𝑇) calculate optimal coefficients  

8: predict 𝑦 from 𝛽∗ and �̂�𝑇 

 

  

 

 

 

  

 

 

 

𝜙 
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For each arbitrary dataset, we run four or three models and compare their losses with respect to the 

exogenous influence eta 𝜂. We run a standard ERM model, a causal ERM model (a model which only pools 

causal information as its input for ERM), a i.i.d model (a model in which we assume train and test follow the 

same data distribution), and our algorithm. For each experiment, we define 𝐷𝑆 as the number of domains for 

train data, 𝐷𝑇 number of domains for test data, 𝑛 as the sample size in any domain, 𝜖, 𝜂 as aforementioned in 

section 3.1.  

4.1 First Experiment: Changing number of domains  

For this experiment, we investigate the effect of changing the number of domains on our error, while also 

taking into the consideration the interval of source domains’ exogenous influence  𝜂𝑆 

Models used: causal ERM, i.i.d model, Our Algorithm 

4.1.1 𝜼 of Source domains follows:  𝒎𝒂𝒙(𝜼𝑺) < 𝒎𝒊𝒏(𝜼𝑻) 

Fixed parameters: 𝐷𝑇 = 300, 𝑛 = 1000, 𝜂𝑇 ∈ [1, 4], 𝜂𝑆 ∈ [0, 2]   

Changing parameter: 𝐷𝑆 ∈ {50, 100, 150,… , 500} 

Results:  

At all trials, the i.i.d model outperformed both our algorithm and the causal ERM, but there are trials where 

our algorithm outperformed the causal ERM at some intervals during some trials.  

The following table shows the results of this experiment:  

Trial # 𝑫𝑺 Interval of 𝜼𝑻 where 𝔼𝒐𝒖𝒓 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 ≤ 𝔼𝒄𝒂𝒖𝒔𝒂𝒍 𝑬𝑹𝑴 

1 50 [1, 3]  

2 100 [1, 2.5]  



DREU Summer 2021  Ahmed Elsayed 
 

7 
 

3 150 [1, 2.35] 

4 200 [1, 1.2] 

5 250 [1, 2.1] 

6 300 [1, 2.2]  

7 350 [1, 2.53]  

8 400 [1, 3.1]  

9 450 [1, 3.2] 

10 500  [1, 1.75] 

Table 1 - the results of performing our second experiment where the number of source domains is variant cetris paribus. 

 

Also, the following is the produced plot for the highlighted trial (# 9):  

 

Figure 1- the plotted errors of our models at trial 9 

4.1.2 𝜼 of Source domains follows:  𝒎𝒂𝒙(𝜼𝑻) < 𝒎𝒊𝒏(𝜼𝑺) 
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Fixed parameters: 𝐷𝑇 = 300, 𝑛 = 1000, 𝜂𝑇 ∈ [1, 4], 𝜂𝑆 ∈ [4.1, 7.1]   

Varying parameter: 𝐷𝑆 ∈ {50, 100, 150,… , 500} 

Results: At all trials, our algorithm behaved worse than the causal ERM  and the i.i.d model.  The following 

shows a plot at a trial where 𝐷𝑆 = 450:  

 

Figure 2 - the plotted errors of our models at 𝐷𝑆 = 450 

4.1.3 Analysis:   

We find that when the training domains exogenous influence 𝜂𝑆  is way bigger than our test domains 

exogenous influence 𝜂𝑇, our algorithm consistently behaves worse than the causal ERM; however, when the 

training domains have 𝜂𝑆 ≤ 𝑛𝑇, we can find intervals where our algorithm outperforms the causal ERM.   

4.2 Second Experiment: Different error intervals for test and train domains.  

For this experiment, we consider the effect of the source domains’ exogenous influence 𝜂𝑆 on our error.  

Models used: Causal ERM, i.i.d model, our Algorithm  
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Fixed parameters: 𝐷𝑆 = 𝐷𝑇 = 250, 𝜂𝑇 ∈ [1, 5], 𝑛 = 2000 

Varying parameter:  the interval of 𝜂𝑆 

Results:  

At all trials, the i.i.d model outperformed both our algorithm and the causal ERM model, but there are trials 

where our algorithm consistently outperformed the causal ERM model.  

The following table shows the results of this experiment: 

Trial  𝜼𝑺 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 Interval of 𝜼𝑻 where 𝔼𝒐𝒖𝒓 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 ≤ 𝔼𝒄𝒂𝒖𝒔𝒂𝒍 𝑬𝑹𝑴 Error scale 

1 [1,4] [1, 1.8]  [0, 2] 

2 [1.5, 4.5] [1, 2.47]  [0, 0.6] 

3 [2, 5] [1, 4.16] [0, 0.6] 

4 [2.5, 5.5] [1, 3.2] [0, 0.4] 

5 [3, 6] CONSISTENTLY BETTER  [0, 0.8] 

6 [3.5, 6.5] [1, 3.94]  [0, 0.3] 

7 [4, 7] CONSISTENTLY BETTER  [0 , 0.7] 

8 [4.5, 7.5] CONSISTENTLY BETTER  [0, 0.35] 

9 [5, 8] CONSISTENTLY BETTER  [0, 0.3] 

10 [5.5, 8.5] CONSISTENTLY BETTER on a decreasing trend [0, 0.25] 

11 [6, 9] [3.9, 5] on a decreasing trend  [0, 0.7] 

 

The following plot was produced at trial 10:   
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Figure 3 -the plot of our models at trial 10 

Analysis:  

We find that our model performs better on intervals where the exogenous influence of the training domains 

is higher than the exogenous influence of the test domains; however, when the training domains exogenous 

influence is ridiculously higher than the test domains, our algorithm performs worse the causal ERM. At trial 

6, where our algorithm fails after 𝜂𝑇 ≈ 3.94, we find that the error scale was very small, making the 

difference between causal ERM and our algorithm negligible. Even though our algorithm didn’t perform 

better, the error difference is too small.  

5. Conclusion 

Based on the previous experiments, we conclude that our approach outperforms than the Standard ERM 

algorithm. We also find that we can optimize our algorithm if we find that our training and test datasets 

meet certain conditions. We find that our algorithm consistently outperforms the standard ERM; however, 
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our algorithm is highly dependent on our hyper-parameters; that is, the number of domains, the effect of 

the exogenous influence, and the sample distribution influence the performance of our algorithm.   

6. Future Applications 

We can use these results to create a zero-shot anti-causal transfer model. This can help in creating a 

meta-learning model in which the algorithm first identifies the properties of the source and transfer 

domains. Consequently, the model can run an algorithm with the most optimal error outcome, improving 

upon traditional causal-inference algorithms.  
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